Abstract
We consider quantum particles coupled to local and collective thermal quantum environments. The coupling is energy conserving, and the collective coupling is scaled in the mean-field way. There is no direct interaction between the particles. We show that an initially factorized state of the particles remains factorized at all times, in the limit of large particle number. Each single-particle factor evolves according to an explicit, nonlinear, dissipative and time-dependent Hartree–Lindblad equation. The model is exactly solvable; we do not make any weak coupling or any Markovian approximations, and our results are mathematically rigorous.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.