Abstract

We study magnetic field evolution in flows with fluctuating in time governing parameters in electrically conducting fluid. We use a standard mean-field approach to derive equations for large-scale magnetic field for the fluctuating Arnold-Beltrami-Childress (ABC) flow as well as for the fluctuating Roberts flow. The derived mean-field dynamo equations have growing solutions with growth rate of the large-scale magnetic field which is not controlled by molecular magnetic diffusivity. Our study confirms the Zeldovich idea that the nonstationarity of the fluid flow may remove the obstacle in the large-scale dynamo action of classic stationary flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.