Abstract

The triangle condition for percolation states that\(\sum\limits_{x,y} {\tau (0,x)\tau (0,y) \cdot \tau (y,0)} \) is finite at the critical point, where τ(x, y) is the probability that the sitesx andy are connected. We use an expansion related to the lace expansion for a self-avoiding walk to prove that the triangle condition is satisfied in two situations: (i) for nearest-neighbour independent bond percolation on thed-dimensional hypercubic lattice, ifd is sufficiently large, and (ii) in more than six dimensions for a class of “spread-out” models of independent bond percolation which are believed to be in the same universality class as the nearest-neighbour model. The class of models in (ii) includes the case where the bond occupation probability is constant for bonds of length less than some large number, and is zero otherwise. In the course of the proof an infrared bound is obtained. The triangle condition is known to imply that various critical exponents take their mean-field (Bethe lattice) values\((\gamma = \beta = 1,\delta = \Delta _t = 2, t\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \geqslant } 2)\) and that the percolation density is continuous at the critical point. We also prove thatv 2 in (i) and (ii), wherev 2 is the critical exponent for the correlation length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.