Abstract

The low field magnetic properties of small uniaxial ferromagnetic particles are studied. We assume spherical particles, whose shells are inscribed into a simple cubic lattice. Each site of the sphere harbours a spin of the particle, which is represented by continuous vectors of unitary magnitude. The model is described by a classical Heisenberg model, where only nearest-neighbor interactions are taken into account. We employ mean-field calculations and Monte Carlo simulations to determine the magnetic properties of particles of different sizes, with radii ranging from three up to twelve lattice spacings. We consider the cases where the external magnetic field is applied along and perpendicularly to the easy axis of the particle. We determine the critical temperature as a function of the anisotropy and size of the particle. Monte Carlo calculations at low temperatures recover the Bloch law, showing that the magnetization decreases with a T 3 / 2 law for isotropic particles larger than three spherical shells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.