Abstract

On the basis of the lattice Boltzmann method for the Navier–Stokes equation, we have done a numerical experiment of a forced turbulence in real space and time. Our new findings are summarized into two points. Firstly, in the analysis of the mean-field behavior of the velocity field using the exit-time statistics, we have verified Kolmogorov's scaling and Taylor's hypothesis at the same time. Secondly, in the analysis of the intermittent velocity fluctuations using a non-equilibrium probability distribution function and the wavelet denoising, we have clarified that the coherent vortices sustain the power-law velocity correlation in the non-equilibrium state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.