Abstract

We calculate, for the first time, the state-dependent pairing gap of a finite nucleus (120Sn) diagonalizing the bare nucleon-nucleon potential (Argonne v14) in a Hartree-Fock basis. The resulting gap accounts for about half of the experimental gap. Going beyond the mean field in the particle-particle channel, the combined effect of the bare nucleon-nucleon potential and of the induced pairing interaction arising from the exchange of low-lying surface vibrations between nucleons moving in time reversal states close to the Fermi energy accounts for the experimental gap. Examples for light, halo nuclei are also reported. The more studied effects of the particle-vibration coupling in the particle-hole channel are discussed for the low-lying quadrupole vibration in 120Sn and the giant dipole resonance in the unstable oxygen isotopes and 132Sn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.