Abstract

Based on two-band isotropic Ginzburg–Landau theory, we study the temperature dependence of upper critical field and London penetration depth for non-centrosymmetric superconductor LaNiC2. All the theoretical calculations fit the experimental data very well, especially the upward curvature of upper critical field near the critical temperature. Our results thus indicate that the two-gap scenario is better to account for the superconductivity of LaNiC2, and the Cooper pairs of this superconductor are in the conventional s-wave state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.