Abstract

We investigated the effects of synaptic depression on the macroscopic behavior of stochastic neural networks. Dynamical mean field equations were derived for such networks by taking the average of two stochastic variables: a firing state variable and a synaptic variable. In these equations, their average product is decoupled as the product of averaged them because the two stochastic variables are independent. We proved the independence of these two stochastic variables assuming that the synaptic weight is of the order of 1/N with respect to the number of neurons N. Using these equations, we derived macroscopic steady state equations for a network with uniform connections and a ring attractor network with Mexican hat type connectivity and investigated the stability of the steady state solutions. An oscillatory uniform state was observed in the network with uniform connections due to a Hopf instability. With the ring network, high-frequency perturbations were shown not to affect system stability. Two mechanisms destabilize the inhomogeneous steady state, leading two oscillatory states. A Turing instability leads to a rotating bump state, while a Hopf instability leads to an oscillatory bump state, which was previous unreported. Various oscillatory states take place in a network with synaptic depression depending on the strength of the interneuron connections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call