Abstract

We analyze multilayer neural networks in the asymptotic regime of simultaneously (a) large network sizes and (b) large numbers of stochastic gradient descent training iterations. We rigorously establish the limiting behavior of the multilayer neural network output. The limit procedure is valid for any number of hidden layers, and it naturally also describes the limiting behavior of the training loss. The ideas that we explore are to (a) take the limits of each hidden layer sequentially and (b) characterize the evolution of parameters in terms of their initialization. The limit satisfies a system of deterministic integro-differential equations. The proof uses methods from weak convergence and stochastic analysis. We show that, under suitable assumptions on the activation functions and the behavior for large times, the limit neural network recovers a global minimum (with zero loss for the objective function).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.