Abstract
We study the action of translation on the spaces of uniformly bounded continuous functions on the real line which are uniformly band-limited in a compact interval. We prove that two intervals themselves will decide if two spaces are topologically conjugate, while the length of an interval tells the mean dimension of a space. We also investigate universal real flows. We construct a sequence of compact invariant subsets of a space consisting of uniformly bounded smooth one-Lipschitz functions on the real line, which have mean dimension equal to one, such that all real flows can be equivariantly embedded in the translation on their product space. Moreover, we show that the countable self-product of any among them does not satisfy such a universal property. This, on the one hand, presents a more reasonable choice of a universal real flow with a view towards mean dimension, and on the other hand, clarifies a seemingly plausible impression; meanwhile, it refines the previously known results in this direction. Our proof goes through an approach of harmonic analysis. Furthermore, both the universal space that we provide and an embedding mapping which we build for any real flow are explicit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.