Abstract
The indeterminacy of financial markets leads investors to face different types of security returns. Usually, security returns are assumed to be random variables when sufficient transaction data are available. If data are missing, they can be regarded as uncertain variables. However, uncertainty and randomness coexist. In this situation, chance theory is the main tool to deal with this complex phenomenon. This paper investigates the conditional value at risk (CVaR) of uncertain random variables and its application to portfolio selection. First, we define the CVaR of uncertain random variables and discuss some of its mathematical properties. Then, we propose an uncertain random simulation to approximate the CVaR. Next, we define the inverse function of the CVaR of uncertain random variables, as well as a computational procedure. As an application in finance, we establish uncertain random mean-CVaR portfolio selection models. We also perform a numerical example to illustrate the applicability of the proposed models. Finally, we numerically compare the mean-CVaR models with the mean-variance models with respect to the optimal investment strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Information Technology & Decision Making
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.