Abstract
Several geometric properties of complete spacelike submanifolds, with codimension at least two, in a Brinkmann spacetime are shown from natural assumptions involving the mean curvature vector field H of the spacelike submanifold. Especially, we get sufficient conditions that assure that a spacelike submanifold is contained in a leaf of the foliation of the Brinkmann spacetime defined by the orthogonal vectors to the parallel lightlike vector field. When this vector field is the gradient of a smooth function, a characterization of arbitrary codimension spacelike submanifolds contained in a leaf of this foliation is given. In the case of plane fronted wave spacetimes, relevant examples of Brinkmann spacetimes that generalize pp-waves spacetimes, several uniqueness results for codimension two spacelike submanifolds are obtained. In particular, it is proven that any compact codimension two spacelike submanifold with H = 0 in a plane fronted spacetime wave must be a (totally geodesic) front of wave.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.