Abstract
We study the uniqueness of minimal submanifolds and the stability of the mean curvature flow in several well-known model spaces of manifolds of special holonomy. These include the Stenzel metric on the cotangent bundle of spheres, the Calabi metric on the cotangent bundle of complex projective spaces, and the Bryant--Salamon metrics on vector bundles over certain Einstein manifolds. In particular, we show that the zero sections, as calibrated submanifolds with respect to their respective ambient metrics, are unique among compact minimal submanifolds and are dynamically stable under the mean curvature flow. The proof relies on intricate interconnections of the Ricci flatness of the ambient space and the extrinsic geometry of the calibrated submanifolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.