Abstract

We conducted a meta-analysis to evaluate the diagnostic values of mean cerebral blood volume for recurrent and radiation injury in glioma patients. We performed systematic electronic searches for eligible study up to August 8, 2016. Bivariate mixed effects models were used to estimate the combined sensitivity, specificity, positive likelihood ratios, negative likelihood ratios, diagnostic odds ratios and their 95% confidence intervals (CIs). Fifteen studies with a total number of 576 participants were enrolled. The pooled sensitivity and specificity of diagnostic were 0.88 (95%CI: 0.82-0.92) and 0.85 (95%CI: 0.68-0.93). The pooled positive likelihood ratio is 5.73 (95%CI: 2.56-12.81), negative likelihood ratio is 0.15 (95%CI: 0.10-0.22), and the diagnostic odds ratio is 39.34 (95%CI:13.96-110.84). The summary receiver operator characteristic is 0.91 (95%CI: 0.88-0.93). However, the Deek's plot suggested publication bias may exist (t=2.30, P=0.039). Mean cerebral blood volume measurement methods seems to be very sensitive and highly specific to differentiate recurrent and radiation injury in glioma patients. The results should be interpreted with caution because of the potential bias.

Highlights

  • Gliomas represent approximately 30% of all central nervous system tumors and 80% of malignant brain tumors [1]

  • Our study suggested that mean cerebral blood volume could aid in the prediction of the presence of recurrent and radiation injury in glioma patients (AUC=0.91)

  • The necrosis areas of cerebral tissue caused by radiation therapy presented different characteristics

Read more

Summary

Introduction

Gliomas represent approximately 30% of all central nervous system tumors and 80% of malignant brain tumors [1]. The methods of 6-week radiation therapy and concomitant temozolomide chemotherapy and 6 times of adjuvant temozolomide chemotherapy after surgical resection are widely employed in the treatment scheme [2]. This treatment protocol increased the risk of brain tissue radiation injury and recurrent in patients with glioma. Previous studies suggested that enlarged and enhanced lesions on MR images may represent pseudoprogression in 46.8-64% of the cases [4]. Because the ADC values in necrotic are usually higher than recurrent tissue This method is limited because of the differences of tumor type. Reduced diffusion can represent highly cellular tumor areas and inflammatory [5]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.