Abstract

The cross-product term in moderated regression may be collinear with its constituent parts, making it difficult to detect main, simple, and interaction effects. The literature shows that mean-centering can reduce the covariance between the linear and the interaction terms, thereby suggesting that it reduces collinearity. We analytically prove that mean-centering neither changes the computational precision of parameters, the sampling accuracy of main effects, simple effects, interaction effects, nor the R2. We also show that the determinants of the cross product matrix X′ X are identical for uncentered and mean-centered data, so the collinearity problem in the moderated regression is unchanged by mean-centering. Many empirical marketing researchers commonly mean-center their moderated regression data hoping that this will improve the precision of estimates from ill conditioned, collinear data, but unfortunately, this hope is futile. Therefore, researchers using moderated regression models should not mean-center in a specious attempt to mitigate collinearity between the linear and the interaction terms. Of course, researchers may wish to mean-center for interpretive purposes and other reasons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.