Abstract
Additive models are often applied in statistical learning which allow linear and nonlinear predictors to coexist. In this article we adapt existing boosting methods for both mean regression and quantile regression in additive models which can simultaneously identify nonlinear, linear and zero predictors. We use gradient boosting in which simple linear regression and univariate penalized spline are used as base learners. Twin boosting is applied to achieve better variable selection accuracy. Simulation studies as well as real data applications illustrate the strength of our proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.