Abstract

The DownSide Risk (DSR) model for portfolio optimisation allows to overcome the drawbacks of the classical Mean-Variance model concerning the asymmetry of returns and the risk perception of investors. This model optimization deals with a positive definite matrix that is endogenous with respect to portfolio weights. This aspect makes the problem far more difficult to handle. For this purpose, Athayde (2001) developed a new recursive minimization procedure that ensures the convergence to the solution. However, when a finite number of observations is available, the portfolio frontier presents some discontinuity and is not very smooth. In order to overcome that, Athayde (2003) proposed a Mean Kernel estimation of the returns, so as to create a smoother portfolio frontier. This technique provides an effect similar to the case in which continuous observations are available. In this paper, Athayde model is reformulated and clarified. Then, taking advantage on the robustness of the median, another nonparametric approach based on Median Kernel returns estimation is proposed in order to construct a portfolio frontier. A new version of Athayde's algorithm will be exhibited. Finally, the properties of this improved portfolio frontier are studied and analysed on the French Stock Market. Keywords DownSide Risk · Kernel Method · Mean Nonparametric Estimation · Median Nonparametric Estimation · Portefolio Efficient Frontier · Semi-Variance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.