Abstract

Synchronous finite state machines are very important for digital sequential designs. Among other important aspects, they represent a powerful way for synchronizing hardware components so that these components may cooperate adequately in the fulfillment of the main objective of the hardware design. In this paper, we propose an evolutionary methodology based on the principles of quantum computing to synthesize finite state machines. First, we optimally solve the state assignment NP-complete problem, which is inherent to designing any synchronous finite state machines. This is motivated by the fact that with an optimal state assignment, one can physically implement the state machine in question using a minimal hardware area and response time. Second, with the optimal state assignment provided, we propose to use the same evolutionary methodology to yield an optimal evolvable hardware that implements the state machine control component. The evolved hardware requires a minimal hardware area and imposes a minimal propagation delay on the machine output signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.