7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1007/s11067-024-09643-1
Copy DOIJournal: Networks and Spatial Economics | Publication Date: Sep 18, 2024 |
License type: CC BY 4.0 |
We investigate the Meal Delivery Routing Problem (MDRP), managing courier assignments between restaurants and customers. Our proposed variant considers uncertainties in meal preparation times and future order numbers with their locations, mirroring real challenges meal delivery providers face. Employing a rolling-horizon framework integrating Sample Average Approximation (SAA) and the Adaptive Large Neighborhood Search (ALNS) algorithm, we analyze modified Grubhub MDRP instances. Considering route planning uncertainties, our approach identifies routes at least 25% more profitable than deterministic methods reliant on expected values. Our study underscores the pivotal role of efficient meal preparation time management, impacting order rejections, customer satisfaction, and operational efficiency.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.