Abstract

Hyperspectral image classification (HSIC) has garnered increasing attention among researchers. While classical networks like convolution neural networks (CNNs) have achieved satisfactory results with the advent of deep learning, they are confined to processing local information. Vision transformers, despite being effective at establishing long-distance dependencies, face challenges in extracting high-representation features for high-dimensional images. In this paper, we present the multiscale efficient attention with enhanced feature transformer (MEA-EFFormer), which is designed for the efficient extraction of spectral–spatial features, leading to effective classification. MEA-EFFormer employs a multiscale efficient attention feature extraction module to initially extract 3D convolution features and applies effective channel attention to refine spectral information. Following this, 2D convolution features are extracted and integrated with local binary pattern (LBP) spatial information to augment their representation. Then, the processed features are fed into a spectral–spatial enhancement attention (SSEA) module that facilitates interactive enhancement of spectral–spatial information across the three dimensions. Finally, these features undergo classification through a transformer encoder. We evaluate MEA-EFFormer against several state-of-the-art methods on three datasets and demonstrate its outstanding HSIC performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.