Abstract

The evolution of N, N′-dimethylperylene-3,4,9,10-dicarboxyimide (Me-PTCDI) thin films formed by vapour deposition on InSb(1 1 1)A substrates has been studied by X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS) and low energy electron diffraction (LEED). XPS studies of the Me-PTCDI covered surface indicate that no significant interaction occurs at sub-monolayer coverage when compared to multilayer Me-PTCDI films. HREELS studies suggest only a weak interaction as evidenced by very small changes in the frequencies of several molecular vibrational modes. LEED patterns show the Me-PTCDI overlayer adopts a structure commensurate with the underlying InSb(1 1 1)A substrate surface and that can be rationalised by van der Waals intermolecular energy calculations for the Me-PTCDI unit cell. The results are consistent with a weak interaction at the Me-PTCDI/InSb interface, the formation of the commensurate structure being sufficient to overcome the small energetic penalty associated with deviation from the calculated intermolecular interaction energy minimum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.