Abstract

Combinatorial designs have been used widely in the construction of self-dual codes. Recently a new method of constructing self-dual codes was established using orthogonal designs. This method has led to the construction of many new self-dual codes over small finite fields and rings. In this paper, we generalize this method by using generalized orthogonal designs, and we give another new method that creates and solves Diophantine equations over GF( p) in order to find suitable generator matrices for self-dual codes. We show that under the necessary conditions these methods can be applied as well to small and large fields. We apply these two methods to study self-dual codes over GF(31) and GF(37). Using these methods we obtain some new maximum distance separable self-dual codes of small orders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.