Abstract
The phytohormone abscisic acid (ABA) plays an important role in the ability of plants to cope with drought stress. As core members of the ABA signaling pathway, protein phosphatase type 2Cs (PP2Cs) have been reported in many species. However, the functions of MdPP2Cs in apple (Malus domestica) are unclear. In this study, we identified two PP2C-encoding genes, MdPP2C24/37, with conserved PP2C catalytic domains, using sequence alignment. The nucleus-located MdPP2C24/37 genes were induced by ABA or mannitol in apple. Genetic analysis revealed that overexpression of MdPP2C24/37 in Arabidopsis thaliana led to plant insensitivity to ABA or mannitol treatment, in terms of inhibiting seed germination and overall seedling establishment. The expression of stress marker genes was upregulated in MdPP2C24/37 transgenic lines. At the same time, MdPP2C24/37 transgenic lines displayed inhibited ABA-mediated stomatal closure, which led to higher water loss rates. Moreover, when exposed to drought stress, chlorophyll levels decreased and MDA and H2O2 levels accumulated in the MdPP2C24/37 transgenic lines. Further, MdPP2C24/37 interacted with MdPYL2/12 in vitro and vivo. The results indicate that MdPP2C24/37 act as negative regulators in response to ABA-mediated drought resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.