Abstract
Diagnosis prediction, a key factor in enhancing healthcare efficiency, remains a focal point in clinical decision support research. However, the time-series, sparse and multi-noise characteristics of electronic health record (EHR) data make it a great challenge. Existing methods commonly address these issues using RNNs and incorporating medical prior knowledge from medical knowledge bases, but they neglect the local spatial characteristics and spatial-temporal correlation of the data. Consequently, we propose MDPG, a diagnosis prediction model based on patient knowledge graphs. Initially, we represent the electronic visit records of patients as a patient-centered temporal knowledge graph, capturing the local spatial structure and temporal characteristics of the visit information. Subsequently, we design the spatial graph convolution block, temporal self-attention block, and spatial-temporal synchronous graph convolution block to capture the spatial, temporal, and spatial-temporal correlations embedded in them, respectively. Ultimately, we accomplish the prediction of patients' future states through multi-label classification. We conduct comprehensive experiments on two real-world datasets independently and evaluate the results using visit-level precision@k and code-level accuracy@k metrics. The experimental results demonstrate that MDPG outperforms all baseline models, yielding the best performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.