Abstract

Durable resin-ceramic adhesion may influence the clinical success of ceramic restorations, which has been one of the challenging issues in dentistry. The present study assessed the bond strength and chemical interaction of 10-methacryloxydecyl dihydrogen phosphate (MDP), MDP+silane, and MDP-salt primers to alumina-blasted zirconia ceramic by tensile bond strength test, surface elemental composition with x-ray photoelectron spectroscopy analysis, contact angle measurement, surface morphology with scanning electron microscopy, and surface topography with 3-dimensional confocal laser scanning microscope analyses. MDP-salt showed the highest tensile bond strength before and after thermocycling when compared with MDP and MDP+silane (P < 0.05). The measured contact angle values differed significantly (P < 0.001) in the order of MDP-salt > control (no chemical pretreatment) > MDP+silane > MDP. There was no difference in surface roughness (P = 0.317) and surface topography among all tested groups. Zirconia treated with MDP-salt showed phosphorus peaks in addition to zirconia and alumina peaks. MDP-salt has zirconia priming properties, which improves bonding performance to resin cement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.