Abstract

The MYCN gene plays a critical role in determining the clinical behavior of neuroblastoma. Although it is known that genomic amplification occurs in high-risk subsets, it remains unclear how MYCN expression is regulated in the pathogenesis of neuroblastomas. Herein, we report that MYCN expression was regulated by the oncoprotein MDM2 at the post-transcriptional level and was associated with neuroblastoma cell growth. Increasing MDM2 by ectopic overexpression in the cytoplasm enhanced both mRNA and protein expression of MYCN. Mechanistic studies found that the C-terminal RING domain of the MDM2 protein bound to the MYCN mRNA’s AU-rich elements within the 3′-untranslated region (3′UTR) and increased MYCN 3′UTR-mediated mRNA stability and translation. Conversely, MDM2 silencing by specific siRNA rendered the MYCN mRNA unstable and reduced the abundance of MYCN protein in MYCN-amplified neuroblastoma cell lines. Importantly, this MDM2 silencing resulted in a remarkable inhibition of neuroblastoma cell growth and induction of cell death through a p53-independent pathway. Our results indicate that MDM2 plays a p53-independent role in the regulation of both MYCN mRNA stabilization and its translation, suggesting that MDM2-mediated MYCN expression is one mechanism associated with growth of MYCN-associated neuroblastoma and disease progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.