Abstract

Chemoresistance is thought to be the cause of low treatment efficacy and mortality in more than 90% of patients with advanced cancer. The activation of drug efflux by P-glycoprotein is the key mechanism of resistance. All known P-gp inhibitors are used only in the combination therapy. We propose a new approach based on the multitarget rational design of drugs, which possess both the antitumor and efflux pump inhibitory activity. In this work, the principle possibility of combining the ability to inhibit P-gp and p53-Mdm2 protein-protein interaction in one structure is considered. The biological activity of a number of known and newly synthesized compounds was evaluated using cell lines with different p53 status. The possibility of using computer modeling for the search for P-glycoprotein inhibitors among Mdm2 inhibitors was analyzed; P-gp interaction site and binding modes of substrates and inhibitors were identified. The results obtained in cells that have the native balance of drug resistance and sensitivity showed the ability of the cells to both actively throw out xenobiotics and to lose this ability using P-gp inhibitors. The data obtained indicate that Mdm2 inhibitors are a promising platform for the development of multitarget drugs that can overcome tumor resistance by inhibiting the P-glycoprotein activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.