Abstract

The p53 tumor suppressor is regulated by MDM2-mediated ubiquitination and degradation. Ubiquitination of p53 is regulated by ARF, which binds to MDM2 and inhibits its E3 ligase function. P53 is also subjected to modification by conjugation of SUMO-1. We found that a p53 mutant deficient for MDM2 binding (p53(14Q19S)) is poorly sumoylated in vivo compared to wild-type p53. Overexpression of MDM2 increases the level of p53 sumoylation, which is further stimulated by expression of ARF. Stimulation of p53 sumoylation requires a highly conserved region (102-116) encoded by exon 2 of ARF and correlates with the ability of ARF to target p53 to the nucleolus. An MDM2 deletion mutant (MDM2(Delta222-437)) with activated cryptic nucleolar localization signal also targets p53 to the nucleolus and efficiently promotes p53 sumoylation in the absence of ARF. Direct targeting of p53 to the nucleolus enhances its sumoylation in an MDM2- and ARF-dependent fashion. These results show that p53 sumoylation is regulated by MDM2- and ARF-mediated nucleolar targeting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.