Abstract

Dickkopf-1 (DKK1), a secreted modulator of Wnt signaling, is overexpressed in many cancers, is often associated with worse clinical outcomes, and has been shown to have immunosuppressive effects. DKN-01 is an IgG4 clinical stage antibody that potently and specifically neutralizes human and murine DKK1 and has recently completed a promising study in combination with pembrolizumab in patients with gastric/gastroesophageal junction cancer. The purpose of this study is to characterize a murine version of DKN-01 (mDKN-01) and to better understand its mechanism of action. We examined the efficacy of mDKN-01 in both melanoma and metastatic breast cancer models. Immune depletion experiments revealed a requirement for natural killer (NK) but not B and T cells for tumor growth inhibition. mDKN-01 treatment promotes the induction of the NK-activating cytokines IL15 and IL33 as well as an enhanced recruitment of CD45+ cells. Other treatment-related changes include a reduction of Gr-1+CD11b+ myeloid-derived suppressor cells (MDSC) in the tumor and spleen and the upregulation of PD-L1 on MDSCs. In addition, mDKN-01 has a marked effect at reducing pulmonary metastases in the mouse 4T1 breast cancer model. Finally, the mDKN-01/anti-PD-1 combination was more effective at inhibiting melanoma growth than mDKN-01 alone. Taken together, our data demonstrate that mDKN-01 has efficacy by blocking the immunosuppressive effects of DKK1 in the tumor microenvironment (TME) and provides insight into the clinical activity observed with DKN-01-based treatment. IMPLICATIONS: mDKN-01 reverses a DKK1-mediated innate immune suppression in the TME and has additive efficacy with a PD-1 inhibitor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.