Abstract

Federated Learning (FL) is an emerging distributed framework that enables clients to conduct distributed learning and globally share models without requiring data to leave the local. In the FL process, participants are required to contribute data resources and computing resources for model training. However, the traditional FL lacks security guarantees and is vulnerable to attacks and damages by malicious adversaries. In addition, the existing incentive methods lack fairness to participants. Therefore, accurately identifying and preventing malicious nodes from doing evil, while effectively selecting and incentivizing participants, plays a vital role in improving the security and performance of FL. In this paper, we propose a Robust Federated Learning Based on Malicious Detection and Incentives (MDIFL). Specifically, MDIFL first uses a gradient similarity to calculate reputation, thereby maintaining the reputation of participants and identifying malicious opponents, and then designs an effective incentive mechanism based on contract theory to achieve collaborative fairness. Extensive experimental results demonstrate that the proposed MDIFL can not only preferentially select and effectively motivate high-quality participants, but also correctly identify malicious adversaries, achieve fairness, and improve model performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.