Abstract

Autophagy is a major degradation pathway in plants for maintaining cellular homeostasis in response to various environmental stressors. ATG8 is one of a series of autophagy-related (ATG) proteins and plays a central role in both bulk and selective autophagy. Previously, we characterized MdATG8i in apple and demonstrated that it has a positive role in apple stress resistance. Although many ATG8-interacting proteins have been found in Arabidopsis, no protein has been reported to interact with MdATG8 in apple. Here, we identified MdHARBI1 as a MdATG8i-interacting protein in apple, however, the functions of HARBI1-like proteins have not been explored in plants. Expression analysis of MdHARBI1 and pro-MdHARBI1-GUS staining of transgenic Arabidopsis exposed to high temperature demonstrated that MdHARBI1 was significantly induced by heat stress. Moreover, heat-treated MdHARBI1-trangenic tomato plants maintained higher autophagic activity, accumulated fewer ROS, and displayed stronger chlorophyll fluorescence than wild-type plants. Because these phenotypes were consistent with those displayed by MdATG8i-overexpressing apple plants under high temperature, we concluded that the MdATG8i-interacting protein MdHARBI1 plays a critical role in the basal thermotolerance of plants, mainly by influencing autophagy pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.