Abstract
This study investigates the effects of including patients’ clinical information on the performance of deep learning (DL) classifiers for disease location in chest X-ray images. Although current classifiers achieve high performance using chest X-ray images alone, consultations with practicing radiologists indicate that clinical data is highly informative and essential for interpreting medical images and making proper diagnoses. In this work, we propose a novel architecture consisting of two fusion methods that enable the model to simultaneously process patients’ clinical data (structured data) and chest X-rays (image data). Since these data modalities are in different dimensional spaces, we propose a spatial arrangement strategy, spatialization, to facilitate the multimodal learning process in a Mask R-CNN model. We performed an extensive experimental evaluation using MIMIC-Eye, a dataset comprising different modalities: MIMIC-CXR (chest X-ray images), MIMIC IV-ED (patients’ clinical data), and REFLACX (annotations of disease locations in chest X-rays). Results show that incorporating patients’ clinical data in a DL model together with the proposed fusion methods improves the disease localization in chest X-rays by 12% in terms of Average Precision compared to a standard Mask R-CNN using chest X-rays alone. Further ablation studies also emphasize the importance of multimodal DL architectures and the incorporation of patients’ clinical data in disease localization. In the interest of fostering scientific reproducibility, the architecture proposed within this investigation has been made publicly accessible(https://github.com/ChihchengHsieh/multimodal-abnormalities-detection).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.