Abstract

Deep learning methods have achieved impressive performance in compressed video quality enhancement tasks. However, these methods rely excessively on practical experience by manually designing the network structure and do not fully exploit the potential of the feature information contained in the video sequences, i.e., not taking full advantage of the multiscale similarity of the compressed artifact information and not seriously considering the impact of the partition boundaries in the compressed video on the overall video quality. In this article, we propose a novel Mixed Difference Equation inspired Transformer (MDEformer) for compressed video quality enhancement, which provides a relatively reliable principle to guide the network design and yields a new insight into the interpretable transformer. Specifically, drawing on the graphical concept of the mixed difference equation (MDE), we utilize multiple cross-layer cross-attention aggregation (CCA) modules to establish long-range dependencies between encoders and decoders of the transformer, where partition boundary smoothing (PBS) modules are inserted as feedforward networks. The CCA module can make full use of the multiscale similarity of compression artifacts to effectively remove compression artifacts, and recover the texture and detail information of the frame. The PBS module leverages the sensitivity of smoothing convolution to partition boundaries to eliminate the impact of partition boundaries on the quality of compressed video and improve its overall quality, while not having too much impacts on non-boundary pixels. Extensive experiments on the MFQE 2.0 dataset demonstrate that the proposed MDEformer can eliminate compression artifacts for improving the quality of the compressed video, and surpasses the state-of-the-arts (SOTAs) in terms of both objective metrics and visual quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call