Abstract

The stress influence on the defect production rate and size distribution of defect clusters in cascades was evaluated by molecular dynamics method. Stress was applied by exerting uni-axial, hydrostatic and isometric strain into the cell. For the uni-axial case, strain was varied between −1% and 1%. Defect production rate in cascade increased significantly under uni-axial tensile stress, and even under uni-axial compressive one. The largest increase of defect production rate was observed under isometric strain, and not so much under hydrostatic one. These results indicate that deformation anisotropy is a key factor to increase defect production rate. It was also found that larger defect clusters were formed under the strain condition in which defect production rate is higher.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call