Abstract

Food quality is greatly impacted by traditional heat methods for polygalacturonase (PG) inactivation; therefore, it's imperative to develop a novel infrared (IR) inactivation approach and identify its mechanism. Utilizing molecular dynamics (MD) simulation, this study verified the PG's activity, structure, active sites, and substrate channel under the single thermal and non-thermal effects of IR. PG activity was significantly reduced by IR, and structure was unfolded by increasing random coils (65.62 %) and decreasing β-sheets (29.11 %). MD data indicated that the relative locations of PG's active sites were altered by both IR effects, and the enzyme-substrate channel was shortened (10.53 % at 18 μm and 15.79 % at 80 °C). The thermal effect of IR on the inactivation of PG was significantly more pronounced than its non-thermal effect. This study unveiled the mechanism by which the infrared disrupted PG's activity, active sites, and substrate channels; thus, it expanded the infrared technique's efficacy in enzyme control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call