Abstract

Molecular dynamics (MD) simulations were performed to investigate unique crystalline states of typical ionic crystal at condition of a strong gravitational field (one million G). The simulation results showed that lattice vibration spectra of anion and cation along the gravity direction were different from the spectra along normal directions of the gravity. It is also shown that the shapes of spectra along the gravity are obviously different from the others along normal directions of the gravity. In addition, the peaks of spectra along the gravity were shifted. The simulation results showed that anisotropic lattice vibration spectra were induced by strong gravitational field, and it is insisted that the unique crystalline states and physical properties are induced by strong gravitational field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.