Abstract
Chemical enhanced polishing (CEP) is a widely employed final process for achieving precise surface shaping and planarization of semiconductor wafers. However, determining the chemical effect involved in material removal through experimental means is extremely challenging. In this study, we conducted reactive force field (ReaxFF) molecular dynamics (MD) simulations to gain insight into the chemical effects of CEP using an aqueous hydrogen peroxide (H2O2) diamond suspension as a polishing medium for 6H-SiC single crystals. The inclusion of aqueous H2O2 resulted in the formation of SiOH and COH species, which are comparatively easier to remove through mechanical abrasion. Furthermore, an increase in H2O2 concentration was found to enhance the material removal. The MD simulations also revealed that the chemical effects on the Si-face of 6H-SiC were more pronounced than those on the C-face due to the generation of a greater number of SiO species and the favourable atomic structure of the Si-face for chemical removal. The results showed that the material remove rate on the Si-face is greater than that on the C-face during polishing, aligning with the findings from MD simulation. Furthermore, a systematic experimental study was carried out to examine the influence of various conditions on material removal rate and surface quality in both polishing and lapping processes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.