Abstract

The ever-increasing demand for high performance in the time-critical, low-power embedded domain drives the adoption of powerful but unpredictable, heterogeneous Systems-on-Chip. On these platforms, the main source of unpredictability—the shared memory subsystem—has been widely studied, and several approaches to mitigate undesired effects have been proposed over the years. Among them, performance-counter-based regulation methods have proved particularly successful. Unfortunately, such regulation methods require precise knowledge of each task’s memory consumption and cannot be extended to isolate mixed-criticality tasks running on the same core as the regulation budget is shared. Moreover, the desirable combination of these methodologies with well-known time-isolation techniques—such as server-based reservations—is still an uncharted territory and lacks a precise characterization of possible benefits and limitations. Recognizing the importance of such consolidation for designing predictable real-time systems, we introduce MCTI (Mixed-Criticality Task-based Isolation) as a first initial step in this direction. MCTI is a hardware/software co-design architecture that aims to improve both CPU and memory isolations among tasks with different criticalities even when they share the same CPU. In order to ascertain the correct behavior and distill the benefits of MCTI, we implemented and tested the proposed prototype architecture on a widely available off-the-shelf platform. The evaluation of our prototype shows that (1) MCTI helps shield critical tasks from concurrent non-critical tasks sharing the same memory budget, with only a limited increase in response time being observed, and (2) critical tasks running under memory stress exhibit an average response time close to that achieved when running without memory stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.