Abstract

Steered-fiber placement has been a very interesting approach to enhance the mechanical properties of fiber-reinforced composite structures, especially with holes. Based on flow field theory and the Levenberg–Marquardt algorithm, the fiber orientations on a variable stiffness (VS) ply in a composite plate with a central hole are represented and optimized. The fiber orientations on the VS plies are aligned with those of the maximum principal stress as much as possible. By transforming the complex planning problem of curvilinear trajectory into the function design of a scalar field, this method leads to better efficiency and general optimization. Comparative failure analysis based on the MCT criterion shows that the VS model has a 197% higher capability for initial damage and a 97% higher capability for ultimate load. The contour plots of the failure state and the load–displacement plots also certify the validity and the feasibilities of the proposed VS planning method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.