Abstract

Development of infrared and sub-terahertz radiation detectors at the same sensitive elements on the base of mercurycadmium- telluride (MCT) is reported. Two-color un-cooled and cooled to 78 K narrow-gap MCT semiconductor thin layers, grown by liquid phase epitaxy or molecular beam epitaxy method on high resistivity CdZnTe or GaAs substrates, with bow-type antennas were considered both as sub-terahertz direct detection bolometers and 3 to 10 μm infrared photoconductors. Their room temperature noise equivalent power (NEP) at frequency ~ 140 GHz and signal-to-noise ratio (S/N) in the spectral sensitivity maximum under the monochromatic (spectral resolution of ~0.1 μm) globar illumination were reached NEP ~4.5*10-10 W/Hz1/2 and S/N~50, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call