Abstract

With their significant performance and energy advantages, emerging manycore processors have also brought new challenges to the architecture research community. Manycore processors are highly integrated complex system-on-chips with complicated core and uncore subsystems. The core subsystems can consist of a large number of traditional and asymmetric cores. The uncore subsystems have also become unprecedentedly powerful and complex with deeper cache hierarchies, advanced on-chip interconnects, and high-performance memory controllers. In order to conduct research for emerging manycore processor systems, a microarchitecture-level and cycle-level manycore simulation infrastructure is needed. This paper introduces McSimA+, a new timing simulation infrastructure, to meet these needs. McSimA+ models x86based asymmetric manycore microarchitectures in detail for both core and uncore subsystems, including a full spectrum of asymmetric cores from single-threaded to multithreaded and from in-order to out-of-order, sophisticated cache hierarchies, coherence hardware, on-chip interconnects, memory controllers, and main memory. McSimA+ is an application-level+ simulator, offering a middle ground between a full-system simulator and an application-level simulator. Therefore, it enjoys the light weight of an application-level simulator and the full control of threads and processes as in a full-system simulator. This paper also explores an asymmetric clustered manycore architecture that can reduce the thread migration cost to achieve a noticeable performance improvement compared to a state-of-the-art asymmetric manycore architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.