Abstract

Monocyte-endothelial interaction plays a pivotal role in atherosclerosis. We previously showed that HMG CoA reductase inhibitor reduces adhesion, however, not the rolling of monocytes to vascular endothelium under flow in vitro. In the present study, we investigated the effect of pitavastatin, a novel HMG CoA reductase inhibitor, on the transition from monocyte rolling on vascular endothelium to stable adhesion induced by MCP-1 under flow (shear stress = 1.0 dyne/cm 2). Control THP-1 cells rolled on activated (IL-1β, 4 hours) human umbilical vein endothelial cells (HUVEC) and the number of adhered THP-1 cells were significantly enhanced following the addition of 50 nM of MCP-1 (p < 0.002). In contrast, MCP-1 failed to convert pitavastatin-treated (10 μM, 48 hours) THP-1 rolling to stable adhesion, as compared to baseline adhesion, prior to the addition of MCP-1 (p > 0.4). Pitavastatin-induced changes in THP-1 cells were reversed by treatment with 10 μM of mevalonate, the intermediate of cholesterol biosynthesis. To elucidate the mechanism by which pitavastatin modulates MCP-1-induced THP-1 adhesive interactions, the possible involvement of extracellular signal-regulated kinase 1/2 (ERK1/2) was examined. Western blotting analysis using an anti-ERK1/2 Ab and an antibody against phosphorylated-ERK1/2 (p-ERK) revealed that pitavastatin treatment significantly inhibited the MCP-1-induced phosphorylation of ERK1/2. Further, a RhoA pull-down assay revealed that activation of RhoA GTPase was reduced after pitavastatin treatment. Interestingly, an inhibitor of RhoA GTPase, but not that of the ERK1/2 pathway, attenuated MCP-1-dependent adhesion of THP-1 cells to HUVEC. These findings indicate a role for pitavastatin in modulating the MCP-1-induced phenotypic changes of monocyte-endothelial interactions, which may account for the anti-inflammatory effects of statins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.