Abstract

Digital image correlation (DIC) is a widely used photomechanical method for measuring surface deformation of materials. Practical engineering applications of DIC often encounter challenges such as discontinuous deformation fields, noise interference, and difficulties in measuring boundary deformations. To address these challenges, a new, to the best of our knowledge, DIC method called MCNN-DIC is proposed in this study by incorporating mechanical constraints using neural network technology. The proposed method applied compatibility equation constraints to the measured deformation field through a semi-supervised learning approach, thus making it more physical. The effectiveness of the proposed MCNN-DIC method was demonstrated through simulated experiments and real deformation fields of nuclear graphite material. The results show that the MCNN-DIC method achieves higher accuracy in measuring non-uniform deformation fields than a traditional mechanical constraints-based DIC and can rapidly measure deformation fields without requiring extensive pre-training of the neural network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.