Abstract

In a seminal paper, McMillan proposed a technique for constructing a finite complete prefix of the unfolding of bounded (i.e., finite-state) Petri nets, which can be used for verification purposes. Contextual nets are a generalisation of Petri nets suited to model systems with read-only access to resources. When working with contextual nets, a finite complete prefix can be obtained by applying McMillan's construction to a suitable encoding of the contextual net into an ordinary net. However, it has been observed that if the unfolding is itself a contextual net, then the complete prefix can be significantly smaller than the one obtained with the above technique. A construction for generating such a contextual complete prefix has been proposed for a special class of nets, called read-persistent. In this paper, we propose an algorithm that works for arbitrary semi-weighted, bounded contextual nets. The construction explicitly takes into account the fact that, unlike in ordinary or read-persistent nets, an event can have several different histories in general contextual net computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.