Abstract
Light cycle oil (LCO), a by-product of the fluid catalytic cracking (FCC) process in a petroleum refinery, can be used as a blendstock for the production of diesel and jet fuels. Regulatory and operational issues result in need for new and more active catalysts for the deep hydrodesulfurization (HDS) of diesel feedstocks, such as LCO. This paper reports the activity of a mesoporous molecular sieve MCM-41-supported Co-Mo catalyst in comparison to a commercial γ-alumina (Al 2O 3)-supported Co-Mo catalyst for the desulfurization of a LCO with a sulfur content of 2.19 wt.%. The HDS of dibenzothiophene, 4-methyldibenzothiophene, and 4,6-dimethyldibenzothiophene—polyaromatic sulfur compounds present in LCO—and their relative reactivities in terms of conversion were examined as a function of time on stream in a fixed-bed flow reactor. The MCM-41-supported catalyst demonstrates consistently higher activity for the HDS of the refractory dibenzothiophenic sulfur compounds, particularly 4,6-dimethyldibenzothiophene. The presence of a large concentration of aromatics in LCO appears to inhibit the HDS of the substituted dibenzothiophenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.