Abstract

We have developed an innovative mesoporous nanocatalyst by carefully attaching a 2-aminothiophenol-Cu complex onto functionalized MCM-41. This straightforward synthesis process has yielded a versatile nanocatalyst known for its outstanding efficiency, recyclability, and enhanced stability. The structural integrity of the nanocatalyst was comprehensively analyzed using an array of techniques, including BET (Brunauer–Emmett–Teller) for surface area measurement, ICP (Inductively Coupled Plasma) for metal content determination, EDS (Energy-Dispersive X-ray Spectroscopy) for elemental mapping, XRD (X-ray Diffraction) for crystalline structure elucidation, SEM (Scanning Electron Microscopy), EMA (Elemental Mapping Analysis), TEM (Transmission Electron Microscopy), TGA (Thermogravimetric Analysis), FT-IR (Fourier Transform Infrared Spectroscopy), AFM (Atomic Force Microscopy), and CV (cyclic voltammetry). Subsequently, the catalytic properties of the newly developed MCM-41-CPTEO-2-aminothiophenol-Cu catalyst was evaluated in the synthesis of biphenyls, demonstrating outstanding yields through a Suzuki coupling reaction between phenylboronic acid and aryl halides. Importantly, this reaction was conducted in an environmentally friendly medium. Note the remarkable recyclability of the catalyst, proving its sustainability over six cycles with minimal loss in activity additionally hot filtration test was prepared to examine the stability of this nanocatalyst. This outstanding feature emphasizes the catalyst's potential for long-term, environmentally conscious catalytic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.