Abstract
This paper describes a spectroscopic study of the heterogenisation of a novel liquid-phase epoxidation catalyst, a titanium(IV) silsesquioxane complex. Its immobilisation is performed exclusively via a straightforward adsorption of the homogeneous catalyst, i.e. the metal complex, in the pores of an MCM-41 host material. Applying all-silica MCM-41 hosts, stable and heterogeneous liquid-phase epoxidation catalysts are obtained. These highly active catalytic materials were extensively characterised using diffuse reflectance UV-Vis, XPS and Raman spectroscopy. With these techniques the strong adsorption of the intact catalytic complex within an all-silica MCM-41 host is demonstrated. A spectroscopic investigation on the ancillary cyclohexyl ligands of the silsesquioxane complex reveals strong interactions upon adsorption inside the MCM-41 pore. The interaction of these cyclohexyl ligands with the MCM-41 pore wall, as shown by Raman spectroscopy, reveals a constrained configuration of these ligands. Moreover, a hardly affected cyclopentadienyl ligand on the titanium site upon adsorption suggests a preferable orientation in which the catalytic active titanium site is pointing inside the MCM-41 pore. As such, the accessibility of the titanium site for substrate and oxidant in heterogeneous epoxidation catalysis is guaranteed, in agreement with the high catalytic activity found for these heterogeneous catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.