Abstract
AbstractIn this paper, a novel Multiview CLOUD (mCLOUD) visual feature extraction mechanism is proposed for the task of categorizing clouds based on ground-based images. To completely characterize the different types of clouds, mCLOUD first extracts the raw visual descriptors from the views of texture, structure, and color simultaneously, in a densely sampled way—specifically, the scale invariant feature transform (SIFT), the census transform histogram (CENTRIST), and the statistical color features are extracted, respectively. To obtain a more descriptive cloud representation, the feature encoding of the raw descriptors is realized by using the Fisher vector. This is followed by the feature aggregation procedure. A linear support vector machine (SVM) is employed as the classifier to yield the final cloud image categorization result. The experiments on a challenging cloud dataset termed the six-class Huazhong University of Science and Technology (HUST) cloud demonstrate that mCLOUD consistently outperforms the state-of-the-art cloud classification approaches by large margins (at least 6.9%) under all the different experimental settings. It has also been verified that, compared to the single view, the multiview cloud representation generally enhances the performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.