Abstract

Cisplatin is one of the most effective chemotherapeutic agents for the treatment of lung cancer. However, the acquired resistance occurred in cancer cells limits the clinical application of cisplatin. MCL-1, which is an important member in the pro-survival Bcl-2 family, plays a critical role in multidrug resistance (MDR). The aim of the present study is to investigate the value of Pan-Bcl-2 inhibitor as sensitizer for the chemotherapy of cisplatin-resistant non-small cell lung cancer (NSCLC) cells. We found the obatoclax but not the ABT-737 significantly decreased the IC50 (half maximal inhibitory concentration) of cisplatin in cisplatin-resistant NSCLC cells. Furthermore, we demonstrated that the mechanism of obatoclax-promoted cell death induced by cisplatin was dependent on the inhibition of MCL-1, which couldn't be inhibited by ABT-737 but is the target of obatoclax. Moreover, inhibition of MCL-1 recovered the function of NOXA and BAK in cisplatin-resistant NSCLC cells, leading to the promotion of mitochondrial apoptosis induced by cisplatin. Interestingly, our date indicated the obatoclax also reversed the cross-resistance in cisplatin-resistant NSCLC cells. Therefore, we demonstrated that the targeted therapy with MCL-1 inhibitors, such as obatoclax, may represent a novel strategy for cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call