Abstract
BCR-ABL positive (+) acute lymphoblastic leukemia (ALL) accounts for ∼30% of cases of ALL. We recently demonstrated that 2-deoxy-d-glucose (2-DG), a dual energy (glycolysis inhibition) and ER-stress (N-linked-glycosylation inhibition) inducer, leads to cell death in ALL via ER-stress/UPR-mediated apoptosis. Among ALL subtypes, BCR-ABL+ ALL cells exhibited the highest sensitivity to 2-DG suggesting BCR-ABL expression may be linked to this increased vulnerability. To confirm the role of BCR-ABL, we constructed a NALM6/BCR-ABL stable cell line and found significant increase in 2-DG-induced apoptosis compared to control. We found that Mcl-1 was downregulated by agents inducing ER-stress and Mcl-1 levels correlated with ALL sensitivity. In addition, we showed that Mcl-1 expression is positively regulated by the MEK/ERK pathway, dependent on BCR-ABL, and further downregulated by combining ER-stressors with TKIs. We determined that energy/ER stressors led to translational repression of Mcl-1 via the AMPK/mTOR and UPR/PERK/eIF2α pathways. Taken together, our data indicate that BCR-ABL+ ALL exhibits heightened sensitivity to induction of energy and ER-stress through inhibition of the MEK/ERK pathway, and translational repression of Mcl-1 expression via AMPK/mTOR and UPR/PERK/eIF2α pathways. This study supports further consideration of strategies combining energy/ER-stress inducers with BCR-ABL TKIs for future clinical translation in BCR-ABL+ ALL patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.